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I. INTRODUCTION 

A. Statement of the Problem 

Since first developed by Kogelnik and Shank (1) the 

distributed feedback laser (DFB) has received wide-spread 

attention as a device suitable for use in integrated optical 

circuits (2-16). The distributed feedback structure employed 

in the thin-film DFB device is capable of providing compact, 

low loss optical cavities for thin-film lasers which allows 

longitudinal mode control and frequency selection. Es­

sentially these are periodic waveguide structures super­

imposed on the gain medium. The feedback mechanism is back­

ward Bragg scattering. 

One of the characteristic properties of periodic 

structures is the distributed reflections or feedback that 

occur in well-specified frequency bands near the Bragg 

frequencies. These Bragg frequencies are defined by a = 

2A/v, where X is the corresponding wavelength of the propa­

gating wave, A is the spatial period of the structure, and 

N is a positive integer that corresponds to the Bragg order. 

The precise location of oscillation wavelengths of a thin-

film DBF is also determined by the Bragg wavelength, which 

in turn is determined by the period A, and film thickness. 

The distributed feedback laser, indeed any electro-

optical device depending on Bragg scattering for its operation, 
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requires a periodic structure. The production of a DBF de­

vice requires fabrication of a periodic structure with a 

fundamental period on the order of an optical wavelength. 

Such a finely structured grating challenges current fabrica­

tion techniques (17-22) , and may well contain flaws which must 

result in less than perfect periodicity and distortion. In 

evaluating the potential operation of DFB lasers, in­

accuracy in controlling the periodicity must be taken into 

account. 

It appears that the effect of distortion in periodicity 

of the structure of the active medium in a DFB laser has not 

been studied and reported in the literature. Therefore, it 

is the objective of this study to investigate the effect of a 

random aperiodicity or deviation from perfect periodicity on 

the threshold gain and frequency of a distributed feedback 

laser. In other words, we shall examine the effect of the 

flaws in the fabrication of the periodic structure on the 

threshold gain required to achieve lasing in the structure 

and on the frequency at which lasing occurs. 

Like many techniques, the development of fabrication 

techniques for electro-optical periodic structures has been 

evolutionary. Techniques first used for fabrication of 

planar silicon integrated circuits (17) have blended with 

classical and holographic optical techniques to produce useful 
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structures (18-22). The construction of a periodic structure 

is fundamentally a two-step procedure (22). First the desired 

pattern is produced on a mask. The mask is superimposed over 

the base material or substrate leaving appropriate portions 

shielded or exposed. Second, the exposed material is 

altered either in physical profile by etching or in electrical 

properties by diffusion or deposition of a dissimilar material. 

Both these processes have inherent inaccuracies which 

result in deviations from the desired ideal structure. The 

magnitude and nature of these deviations depends on the 

particular process. Several variations exist. First, the 

mask is usually a radiation sensitive polymer which is ex­

posed to radiation of the desired pattern. The radiation 

pattern may be generated directly or by yet another mask. 

Each intermediate mask may introduce distortion from scale 

changes and optical imperfections. Radiation sources are 

usually optical but may be x-ray or electron beam. Direct 

pattern generation may be by externally driven control of an 

electron beam. Resolution and distortion are defined by the 

precision with which the beam may be focused, by precision 

in the direction and location controls and by diffraction 

and backscatter of the beam. Alternatively, a pattern may be 

generated by superposition of two or more coherent sources. 

Distortion arises from source incoherence and departure from 

an optically flat substrate or from plane wave incidence. 
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Once the mask has been formed, the exposed material must 

be altered. The most common process is chemical etching. 

Unfortunately, etching may undercut the mask if deep grooves 

are etched. Ion beam etching provides reasonably clear 

definition but requires a thick mask to prevent faceting or 

undercutting. Diffusion of impurities into the exposed 

substrate gives indefinite boundaries and fails to induce 

significant optical variation. Typical total distortion for 
—4 —5 

a structure produced under laboratory conditions is 10 o/lO 

for a holographically prepared mask and ion beam etching 

( 2 2 )  .  

To obtain a good understanding of the principle of 

operation of the DFB laser, we must have a proper under­

standing of phenomenon of wave propagation in the periodic 

structure. The operation of the distributed feedback DFB 

laser in the thin-film semiconductor configuration has been 

interpreted and explained in terms of two complementary 

models; (a) coupled-mode formalism (2, 23-25) and (b) 

Floquet-Bloch modes approach (3, 26, 27). 

An example of a periodic waveguide for a thin-film laser 

is shown in Figure 1. The wave propagation in the periodic 

structure as shown in Figure 1 can be characterized by 

kjĵ  + kĝ  = k̂ n̂f, (1.1) 
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where and are the transverse and the longitudinal wave 

numbers, and k^ denotes the free space wave number, n^ is the 

film index of refraction. Any change in k^ will result in a 

corresponding change in k^ thereby generating a reflected 

wave. In a DFB laser the spatial variation of d and W (in 

Figure 1) is made periodic so that the reflected wave 

generated by a spatially varying k^ can maintain the proper 

phase relation for constructive feedback. Wave propagation 

in the waveguide involves both the coordinates x and z and 

hence is a two-dimensional problem. This two dimensional 

problem has been analyzed by Wang (28), Wang and Shen (29) 

and DeWames and Hall (30). 

Under the assumption of small perturbations one-

dimensional analysis is applicable (3). In other words the 

problem can be described by the solution of a one-dimensional 

wave equation which must be satisfied by the electric field 

intensity of the optical wave in the active medium; 

2 
- y^E = 0, (1.2) 

dz 

where y= g-ik^(z) is the complex propagation. Here g and 

k^(z) denote the gain constant and the phase constant 

respectivity. 

In the coupled mode approach one chooses to expand 

the field in the periodic waveguide in terms of the modes of 
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LAYER 
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Fig. (a) 
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Fig. (b) 

Figure 1. Examples of periodic waveguide for thin-film lasers 
(a) Structure utilizing periodic variation in thickness of top 

dielectric layer 
(b) Structure utilizing periodic in thickness of film 
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the unperturbed uniform wave-guide which constitute an 

orthonormal set (23). When one substitutes the assumed solu­

tion into the Maxwell's equation and limits the expansion to 

the two modes which are Bragg-coupled (|6| = Kg, see Figure 

2 for detail), the result is the coupled-mode equation (24), 

dR 
=-iKA exp[-i2(3-K3 + ig^jz] (1.3a) 

0" = iicB exp[i2(B-Kg + ig^jz], (1.3b) 

whose solutions are given in reference (2) for the case 

of a DFB laser. Here g and g^, are the phase constant 

and the gain constant, respectively, and ^ is the Bragg 

wave number and "a" denotes the spatial period, k is the 

coupling coefficient determined by the modulation of the 

structure. A and B represent the amplitudes of forward 

and backward wave (see Figure 2a). 

Kogelnik and Shank (2) describe the field as coupled 

forward and backward waves, which are described by the fol­

lowing coupled differential equations: 

dR (1 = 43) 
dz Vy^-Lu;4-\ — 

ÉÊ. + (g-iô)s = icR, (1.4b) 
dz 

where R(z) and S(z) are the forward and backward wave 

components of electric field intensity, and 6 denotes the 
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UNIFORM 
WAVEGUIDE PERIODIC WAVEGUIDE 

B{-L/2)exp(-i3z) 

A(- L/2)exp(i3z) 

B{z)exp(-igz) 

+ A(z)exp (iBz) 

z = -L/2 2=0 

Fig. (a) 

UNIFORM 
WAVEGUIDE 

B(L/2)exp(-i3z) 

z = L/2 

Aexp(-igz) 

B exp(i3z) 

PERIODIC WAVEGUIDE 

i[u^exp(Pz) + SuUL.exp(-Pz)l exp(-iK„z) 
I I u u 

+[U|^exp(-Pz) + s^U^exp(Pz)] exp(iKgZ) 

z = - L/2 

C exp(-igz) 

z = L/2 

Fig. (b) 

Figure 2. The basic periodic waveguide models and the form of assumed 

wave solution, (a) coupled mode formalism (b) truncated 
Floquet-Bloch formalism P = F + iKg, F = G - IK. 
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amount of detuning from the Bragg condition. 

In dealing with the coupled wave phenomenon usually one 

considers two waves or modes (R and S) of a guiding structure 

which propagate freely and uncoupled as long as the structure 

is not perturbed. A perturbation of the original structure, 

e.g., an induced change of the refractive index of the film 

guide, will lead to a coupling of two waves and an exchange 

of energy between them. 

An important requirement for a significant interaction 

is the synchronism or "phase-matching" between the two 

coupled waves, which in the simplest case is the requirement 

for the equality Bp = Bg of the phase constants and Bg 

of the two waves. The scattering of light by a periodic 

structure can be viewed as a coupled wave process. 
L L 

The imposition of the boundary condition S(^) = R(-2) = 0 

results in a longitudinal mode spectrum for each transverse 

wave guide mode similar to that existing in Fabry-Perot 

resonator of the same length (see Figure 2a). 

On the other hand, in the truncated Floquet-Bloch 

formalism of Cordero and Wang (3, 26, 27), the solution is in 

the form of four waves (two fundamental components and two 

associated space harmonics) as shown in Figure 2b. 

According to Floquet's theorem, Equation (1.2) has a 

solution of the form; 
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E(z) = A*i(z) exptr^z) + 8*2(z) expC-r^z) (1.5) 

where <J)(z) = (})(z+a) is a periodic function of period a. 

Since ({)(z) repeats itself from period to period, the long 

range behavior of E(z) is governed by expf+rgZ) in so far 

as the amplitude of the wave is concerned. 

To find the form of #(z) and the value of the de­

pendence of y{z) on z must be specified. Although k^fz) in 

Equation (1,2) can be any periodic function of z, the rec­

tangular variation shown in Figure 3 is typical. Wang (3) 

uses this rectangular variation to study representative be­

havior of the propagation constant near the Bragg frequency, 

to^. The propagation constant = G^-iK^ in the periodic 

medium is complex with representing the effective gain 

constant and representing the effective phase constant. 

The Bragg frequency, is the frequency at which the 

average phase propagation constant g equals the Bragg wave 

number ir/a. The distributed feedback coefficient, k, is 

the average reflection per unit length. For the structure 

shown in Figure 3, g = (3^+32)/2, a = a^+ag and k = 

( 6 2 ~ 3 i)/'i t. It should be noted that near the effective 

propagation constant in the periodic waveguide differs 

considerably from the propagation constant in a cor­

responding uniform waveguide. The thin-film device under 

discussion can be characterized by the relationship of the 
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A 

k^Cz) 
k^(z) = 3-,, -32 < z < 0 

= gg, 0 < z < 

à = {à^ + dg) 

z = -a. z = a-, 

Figure 3. The periodic variation of k^(z) in the periodic waveguide. 
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reflected and transmitted wave and to the incident 

wave (see Figure 4). 

Using the field expression E = U exp[+i6z] for the wave 

in the uniform waveguide and E = Ugf(z) expt+r^z] for the two 

Bloch waves in the periodic waveguide and applying the 

continuity of tangential electric field intensity E and 

magnetic field intensity H at the two boundaries, Wang (3) 

obtained the threshold condition of thin-film Bragg laser. 

It should be pointed out that the comparison of the 

method of the coupled=mode formalism with the method of 

Floquet-Bloch wave formalism shows that near the Bragg 

regime, the two methods yield the same dispersion relation­

ship, Yariv and Cover (31) recently have shown that the 

truncated Floquet-Bloch approach is formally equivalent to 

that of the coupled-modes. The difference in the form of 

solution assumed in the two approaches is shown in Figure 

(2a) and Figure (2b). The main attraction of the coupled-

wave analysis is the simplicity. However, many details that 

are missing in the coupled-mode analysis could prove im­

portant in realizing the full potential of DFB laser. Conse­

quently, we shall use the truncated Floquet-Bloch appraoch 

in the present study of the effect on the threshold condition 

of the aperiodicity in the perturbed periodic structure. The 

method of analysis, used by Wang (3), for studying the 

perfectly periodic structure is to be extended to include the 
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UNIFORM 
MEDIUM 

PERIODIC 
MEDIUM 

UNIFORM 
MEDIUM 

Uy exp{-i B z) 

z = L/2 z = -L/2 

Figure 4. Diagram showing reflection and transmission at the boundaries 
between uniform and periodic media. The reflected and trans­
mitted fields and U can be expressed in terms of incident 
field by matching the boundary conditions. 
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effect of distortion in the periodicity. The perturbed thres­

hold condition is derived in Section II, and the effect of the 

perturbation on the threshold condition is investigated in 
: I 

Section III. 

B. Review of Semiconductor Laser 

As is well-known, a quantum ensemble of two or imore energy 

states may interact with an incident electro-magnetic wave of 

thej proper energy or frequency (32-36). For simplicity, con­

sider only two energy levels separated by Rw. Two events may 

occur. First, an incident photon may, if sufficiently ener­

getic, be absorbed and excite a member of the ensemble from 

the lower energy stalle to the higher. Second, the incident ; 
1 

I 

photon may stimulate ttie transition of a member of the ensemble 

frorii the upper state to the lower state. This transition emits 

a new photon of energy Ro) which is in phase with the initially 

incident photon. Additionally, spontaneous emission of a pho­

ton by unstimulated transition from higher to lower states 

occurs at a rate independent of stimulated emissions. 

The probability of either stimulated transition may be cal­

culated using time dependent perturbation techniques (33). In 

general, we find that the probability of an ensemble member in 
I 

a lower state absorbing a photon is the same as the probability 

of an ensemble member in the upper state emitting a photon. 

This probability reaches its maximum when the incident photon 

has energy at or near Hw. Finally, the probability of either 
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transition occurring is proportional to the incident field in­

tensity. 

These observations define the requirement for lasing. 

First, predominance of stimulated emission over absorption 

requires a surplus population of ensemble members in the 

higher energy state. In a realizable system stimulated 

emission must also dominate all loss mechanisms. Second, 

predominance of stimulated emission over spontaneous emission 

requires a threshold incident field. Finally, the field must 

have a frequency at or near the quantum transition frequency. 

While the preceding discussion applies directly to 

ensembles of discrete quantum oscillators, the quantum charac­

teristics of semiconductors differ in several respects. The 

periodic nature of the crystal modifies the Schrodinger solu­

tion for free electrons so the electrons form an interactive 

ensemble rather than isolated oscillators. The periodicity 

creates ranges or bands of allowed energies separated by 

bands of disallowed or forbidden energies. Transitions of 

electrons between states separated by a band gap form the 

basis for lasing (35-40). 

j.iiG p3rowai«^iJ.1 Ci. SH GxGCujTon cccupying s 

particular equilibrium energy state, is given by Fermi-Dirac 

distribution, 

f"~^(e) = 1 + exp[ (e-F)/kgT] (1.6) 

where 
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F is the Fermi level, 

k is Boltzman's constant, and 
B 
T is the temperature in degrees Kelvin. 

To calculate the requirement for stimulated emission 

dominating absorption, let 

fg be the probability an electron occupies a state 
in the upper band, and 

f^ be the probability an electron occupies a state 
in the lower band. 

Stimulated emission across the band gap E^^-Ey requires 

an occupied state at E^ and an unoccupied state at E^. 

Similarly, absorption requires an occupied state at E^ 

and an empty state at E^^. Since the transition rates for 

absorption and emission are equal, the dominance of either 

process depends entirely on the relative probability of the 

preceding conditions. Hence, emission will dominate absorp­

tion if 

fc(l-fy) > fyfl-fc) (1.7a) 

or 

fc > fv • (1.7b) 

Suppose the electrons in each band are in thermal 

equilibrium. Then, if electrons are injected into the 

upper band or removed from the lower band, the probability 

of an electron occupying a state E2 in the upper band 

or E^ in the lower band is 
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fcT^ = 1 + exp[ (E2-P c) AgT] (1.8a) 

= 1 + exp[(Ei-Fy)/kgT] (1.8b) 

where is the quasi-Fermi level in the valence band, and 

is the quasi-Fermi level in the conduction band. 

Consequently, the requirement for net emission is 

Fc-Fv > (1.9a) 

or 

F^-Fv > Rw • (1.9b) 

This requires that the semiconductor be degenerate 

and, if a p-n junction is used to provide the population 

inversion, the forward bias must be greater than Tiw. 

The population inversion may be created in several 

ways, some more efficient than others, In conventional 

lasers, either an intense incoherent optical source or an 

arc discharge creates a surplus population in the upper 

state (33) , Arc discharge excitation seems inappropriate 

for a semiconductor, although avalanche breakdown excitation 

received some early attention (41). Optical excitation may 

be used, but requires a monochromatic source, i.e,, another 

laser. External efficiency is not high. Furthermore, since 

the absorption rate is quite high, only a small volume of 

material is excited (33), 

Fortunatelyp the well'-studied p-n junction under forward 
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bias injects a surplus of conduction electrons and/or re­

moves valence electrons, thus creating an effective population 

surplus. The forward biased junction has a relatively low 

impedance, allowing high current flow and hence a strongly 

inverted population at low voltages. 

Since first suggested in 1963 (39), p-n junction lasers 

have been fabricated in many configurations and materials. 

However, for semiconductors with band gaps corresponding to 

optical frequencies, the Einstein coefficient relating the 

ratio of spontaneous to stimulated emission is rather high. 

Very high radiation densities and large population in­

versions are thus needed to achieve lasing. Most applications 

where coherence is not an absolute requirement therefore 

use the simple p-n junction as a source of relatively mono-

chromic but incoherent light (37). 

Thus conventional p-n semiconductor-junctions have failed 

to meet early expectations of widespread usefulness. For 

example, in the homojunctions the excessively high threshold 

currents at room temperature and the requirement for a cryo­

genic environment for continuous operation severely limit 

this device's application as a coherent source. 

However, as first proposed in 1963 (42), performance 

of an injection laser may be improved by surrounding the 

active junction region with a material of higher energy band 

gap. Two principal advantages accrue. First, the wider band 
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gap material with its lower index of refraction, defines a 

dielectric optical waveguide and confines the electric field 

to approximately the region of the junction. Second, the : 

wider gap itself provides a potential barrier and retards the 

diffusion of minority injected carriers away from the active 

junction area. The net result is both a higher field in­

tensity and an enhanced concentration of minority carriers, 

both of which favor a higher rate of stimulated emission. 

Panish (43, 44) gives two excellent reviews of heterostructure 

laser properties. 

Injection devices consisting of two or more materials 

with distinct band gaps are called heterostructures. While 

in principle, heterostructures may consist of two simple 

semiconductors such as silicon and germanium, both materials 

have indirect band gaps and are hence unsuited for injection 

lasers. The more usual combination consists of modified 

III-V compounds, typically gallium arsenide. Stochiometric 

substitution of an element with similar valence for a frac­

tion of either the III or V component alters the band gap 

of the compound semiconductor. For example, Casey and 

Panish (45) show that the band gap of Gâj^^^^AljjAs increases 

with X. Similarly, Alferov (46) reports that the band gap 

of GaAl^.^Sb^ increases with x. In both compounds, the 
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index of refraction decreases as the band gap widens. 

Mixing dissimilar III or V valent atoms with the lattice 

often alters the lattice parameters. For example, due to the 

different effective radii of Sb and As ̂ the lattice parameters 

of GaAs^_^Sbx vary significantly with x (44) , As a conse­

quence, the junction boundary of a GaAl^^^Sb-GaAl hetero-

junction suffers severe crystal discontinuities. These 

discontinuities create many nonradiative recombination centers 

which trap minority carriers otherwise available for stimu­

lated emission. The reduction in effective population in­

version usually precludes lasing at reasonable injection 

currents. On the other hand, the lattice parameters of 

Gai_xAljjAs vary only slightly with x. The crystal discontinu­

ities at the boundary of a Ga^^xAlxAs-GaAs junction remain 

limited. The number of nonradiative recombination centers 

is reduced and injection of minority carriers may yield a 

reasonable population inversion. Consequentially, the 

Gai^jjAlxAs-GaAs heterojunction provides the base for most 

heterostructure lasers. 

Unlike gas or crystalline ruby lasers, semiconductor lasers 

require optical waveguiding along the resonance path. This 

confinement of the field pattern increases the field 

intensity in the active region. The more intense field 

enhances stimulated emission and gain coupling of the field 
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and media (47, 48). 

Dielectric waveguiding typically occurs in a three layer 

structure. If the central layer's index of refraction ex­

ceeds the indices of the other two layers, the propagation 

velocity of the central layer is lowest. Hence, a wave-

front of constant phase propagating parallel the slab boun­

daries must be concave in the direction of propagation, thus 

focusing or confining the field. 

Of course, many modes may propagate in such a structure. 

According to Panish et al. (49) and Ikegami (50) transverse 

electric modes usually dominate since these modes have a larger 

reflectivity at the cavity mirrors. 

Knowledge of exact propagation and field confinement for 

the dielectric slab waveguide requires solution of the wave 

equation for the particular structure. Standard techniques 

involving proper boundary values, separation of variables, 

eigenvalues and functions apply. Detailed solution methods 

and results are given by numerous authors including Born 

and Wolf (51), Harrington (52), and Marcuse (53), 

In the heterostructure lasers, the dissimilar indices 

of refraction arise from two causes. First, the outer 

AlyGa^^xAs layer has a lower intrinsic index of refraction 

with an increased band gap. Interestingly, Moss (54) states 

an empirical role for the correlation of semiconductor band 

gap as h^Eg = 77. 
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Pankove (38) notes an effect which enhances waveguiding 

when a wider gap semiconductor surrounds the active region. 

By modifying the Kramers-Kroneg relation for frequency de­

pendent indices of refraction, the following expression 

evolves. 

n(E) - 1 = ̂  P G(E') dE' (1.10) 
(E')2-E2 

where 

E = hv is the photon energy 

P = Cauchy principal value 

a = absorption coefficient 

n = index of refraction 

The absorption coefficient remains small for energies 

less than the band gap. Hence, photons generated by band 

to band recombination in the lower gap material will encounter 

the lower range of the higher gap material's index of re­

fraction. 

Current flow and hence minority injection in hetero-

structures closely resembles the mechanism found in a Schottky 

barrier (38, 55), The forward current density increases 

exponentially with applied voltage so that the junction im­

pedance remains well below ohmic contributions from bulk 

material and contact resistivity. Thus, like the conven­
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tional diode, the heterojunction allows injection of a large 

concentration of minority carriers into the active recombina­

tion region with a low applied voltage. Additionally, the 

band structure of a Ppn or Nnp junction effectively con­

fines the injected minority carriers to a relatively narrow 

region (49, 56, 57), 

The combination of dielectric waveguiding and minority 

carrier confinement increases the efficiency of the hetero­

structure, so that both continuous and room temperature 

lasing are now commonplace (43, 44, 58-60), Consequently, 

the heterostructure has virtually replaced the homostructure 

for semiconductor lasers. 

As noted earlier, population inversion is of itself 

insufficient to achieve lasing. While an adequate inversion 

provides for dominance of emission over absorption and other 

loss mechanisms, stimulated émission must also dominate spon 

taneous emission. Again the frequency dependence of the 

Einstein coefficient shows that lasing at optical frequencies 

requires an intense radiation density. This radiation density 

is usually provided by containing the active medium within a 

structure having a resonance frequency at the quantum transi­

tion frequency of the medium. Although the choice of 

resonant structures is virtually unlimited, the most widely 

used structure remains the Fabry-Perot cavity consisting of 

two parallel, or in some variations slightly concave (33) 
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reflectors. The Fabry-Perot cavity resonates at frequencies 

where an integral number of wavelengths separate the re­

flectors. Since at optical frequencies, a sizeable number of 

frequencies meet this criterion, the quantum transition 

frequency defines the operating resonance. 

In semiconductor lasers, the transition frequency is 

broader than in ruby or gas lasers and minor variations in 

structure geometry and material properties lead to significant 

variations of operating frequencies among lasers, even those 

fabricated from the same chip (35) . Such variations may be un­

desirable for communications applications. Alternatively, a 

periodic structure may provide the resonance requirements and 

define a less ambiguous frequency of operation. Additionally, 

a periodic structure does not need cleaved reflecting planes 

at the ends of the structure and is therefore more easily in­

corporated into a larger integrated circuit. Thus the dis­

tributed feedback laser has been developed, 

C. Effect of Aperiodic Media 

The analysis of waves propagating through a randomly 

disturbed medium, occupies a sizable volume of literature 

(ei'-eS) . Ishimaru (63) provides a comprehensive review and 

extensive bibliography, 

Both the disciplines of RF communication and radio 
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astronomy include well-motivated studies of propagation in 

random media (64, 65). In fact an important communication 

technique, tropospheric scatter, relies entirely on the 

presence of atmospheric inhomogeneity for its operation 

(66), Random inhomogeneities are usually less benign, 

generally increasing noise and fading in radio links. Radio 

astronomers find that atmospheric and interstellar medium 

perturbations muddy the already darkened window to the 

universe, 

Most modern methods for treating random inhomogeneities 

have several common features; First, a characterization of 

the medium with a uniform,small, zero mean perturbation. 

Second, a description of the perturbations by their spectral 

density or autocorrelation function. Third, an attempt to 

identify the expected deviations from the unperturbed phase 

and amplitude some distance from the source. Coherent phase 

contributions such as would be found in a periodic medium 

appear as singularities and are avoided with dus trepidation. 

The preceding claim overstates the difficulties of 

treating coherent phase contributions. Several techniques 

evolving from x-ray crystallography use scattering patterns 

to elicit information about the spatial distribution of 

scattering centers or inhomogeneities within a medium. How­

ever, these techniques generally apply to far-field 

distributions for weak scattering of a uniform plane wave 
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(67, 68). An interesting treatment of scattering from a 

perturbed periodic structure ascribed to Debye is shown 

below (69). 

Consider an ensemble of M scattering centers of scat­

tering intensity fj at locations The total scattered 

amplitude at exterior location is given by 

M 
A (r') = Z f. exp(2TTir.f.) (1.11) 
o i=l ] ] 

Suppose each of these scattering centers is displaced 

from its equilibrium position by an amount Arj, Then the 

total scattering amplitude now becomes: 

M 
A(f') = I f. exp [2Triî'. (?+A?.) ] 

j=l J ] 

M 
= I exp(2nif'.A2.)f. exp(2ïïi?',?•) (1.12) 
j=l ^ 

Suppose the Ary's are independently random. Then we 

may exchange expectation and summation to obtain: 

M 
e{A(?')} = I e{exp(2ïïif" . A?^}f • exp(2TTit ' .?j) (1.13) 

i=i 

If the Ar^'s have equivalent statistics, then 
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e{A(r')} = e{exp(2Tii?'. Ar) }A {?') 
o 

Which, for zero mean Ar gives 
(1.14) 

e{l+(2TTi?'.AÎ) - ^(2ïïî'.Af ) . }Aq (r ' ) 

e{A(?')} = 1 - 2ïï^e{(f'.Af)^} (1.15) 

We might therefore believe that similar perturbations 

of the periodic structure of a distributed feedback laser 

would decrease the effective coherent scattering and increase 

the threshold gain required for lasing. 
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II. DERIVATION OF PERTURBED THRESHOLD CONDITION 

In this section we derive an equation relating the thres­

hold gain and resonance frequency for lasing of a distributed 

feedback laser whose periodic structure is corrupted by a 

small zero mean random perturbation. The analysis contains 

three subsections. 

First, we solve the one-dimensional wave equation for a 

perfectly periodic medium. After briefly considering the 

Floquet form and properties of propagation in periodic media 

and alternative methods of solution, we choose a model in 

which the electric field and the propagation constant in the 

periodic medium are both expandable as Fourier series. Since 

the frequency of operation lies very close to the Bragg 

frequency, only lowest order terms have a significant inter^ 

action and truncation of the complete Fourier series gives 

an approximate solution for the Floquet periodic functions 

and Floquet exponentials. 

Next we modify the Floquet form for a medium slightly 

perturbed by the addition of a zero mean random variable 

whose spatial frequency spectrum is primarily well-below 

that of the unperturbed medium. The modified Floquet form 

retains the same periodic functions, but the Floquet expo­

nential exhibits a shift due to the perturbing term. 

Finally, the modified Floquet form enables calcula-
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tion of effective reflection coefficients at the structure 

boundaries and calculation of the net phase and gain propaga­

tion through the structure. These properties then provide a 

derivation of the threshold conditions for lasing in the 

perturbed structure. 

A, Approximate Solutions for the Unperturbed 
Periodic Structure 

We shall develop a dispersion relation and a solution 

for the electric field in a periodic dielectric waveguide as 

found in a heterojunction or double heterojunction semi­

conductor laser. Assuming first that the frequency of opera­

tion is above the cut-off for the waveguide, and that the 

periodic perturbations are small, then the propagation may be 

reasonably modelled by the one-dimensional wave equation (2, 

3, 70), 

d^E - Y_^E =0 (2.1) 
dz2 ° 

where the complex propagation constant YQ(Z) is given by 

Yo(z) = {2=2a) 

and 

k (z) = k + k^tz) (2.2b) 
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(z) has zero mean and is periodic with spatial 
frequency 2Kg 

is the gain per unit length, and 

E is the complex amplitude of electric field with 
angular frequency w. 

Our assumptions here are that 

In other words, the periodic disturbance is relatively 

small and the gain per wavelength is very small. 

As is well-known the general solution of Equation (2.1) 

is given by the Floquet form (3, 70) 

where 0(z) and ^^z) have the periodicity 2Kg of the 

structure and the propagation constant in the perfectly 

periodic structure = (Gg-iK^) is generally complex. The 

subscript o is used to emphasize that a perfectly 

periodic medium is being considered. Once the functional 

form of k^(z) is specified, then one of several methods 

(3, 70, 71) may be used to solve for Tq, (f) and 

We choose to use the Fourier expansion technique similar 

to that used by Wang (3) to obtain approximate solutions for 

Tq, ̂(z) and Mz). Since device operation is at or near 

the Bragg frequency, only the lowest order modes will 

(2.3a) 

(2.3b) 

E(z) = A(J)(z) exp[rQZ] + Bijj(z) expC-r^z], (2.4) 
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contribute significantly. 

First examining we find 

•Yo^ = [9o " i(k+ki)]2 (2.5) 

can be approximated by 

Yo^ ~ 9o^ " iZg^k - - 2kki (2.6) 

2 by neglecting the terms of order g^k^ and k^ . Since 

k2(z) is periodic we may expand it into the following 

complex Fourier series : 

00 

ki(z) = Z b exp(i2qKgZ) » (2.6) 
q=-oo 

where the coefficients bg are complex in general. 

Equation (2.1) then becomes 

7 _ _ 00 
^ f =• (g^-ik)^E = [-2k E b„ exp (i2qK^2) ]E- (2,7) 

" q=-oo ^ 

Since the general solution of Equation (2.1) or (2.7) is 

given by the Floquet form (2.4), and (i>(z), ^(z) are 

periodic, E(z) may also be expanded into the following 

form: 



www.manaraa.com

32 

°° f 
E(z) = Z u exp{r z+i2qKgZ) 

q=-oo ^ 

00 

b. + Z u "exp(-roZ+i2qKgZ) . (2.8) 
q=t-co 

2 
Calculating SLJË. we find 

d z^ 

2 
^ = I (ro+i2qKg)2u f exp(rQZ+i2qKBz) 
dz q=-m 

+ I (-rQ+i2qKg)2ug^ expf-roZ+iaqKgZ) • (2.9) 

Substituting Equations (2.8) and (2.9) into Equation 

(2.7) yields 

I {(rQ+i2qKg)2 - (qQ-ik)2}Uq exp(rQZ+i2qKgZ) 
q=-oo 

CO 

+ l { (-rQ+i2qKg) 2- (q^-ik) 2}u b exp(-roZ+i2qKgZ) 
q=-oo 

00 00 

= -2k{ I b exp(i2pKgZ)}[ E Ug^ exp(rQZ+i2qKgZ) 
p=—00 " q=—00 

+ Z u exp(-rQZ+i2qKgZ)] . (2.10) 
q=-oo ^ 

By collecting the coefficients of terms with similar expo­

nents from Equation (2.10) and recalling that b^=0, we 
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obtain a sequence of equations defining the coupling 

between the various orders of E{z), 

First; from the terms with expt+T^z) we have 

^ 0 0  f  
[ro^-(g„-ik) ̂]u^ = -2k[b,u, +b,u, E b u ] 
°  °  °  - 1 1 1 - 1  + q  + q  

(2.11a) 

[^-(9 = -2k[b_^u^b+biU+^+ E b_u 
— q=-2 +q +q 

(2.11b) 

From the terms with exp(r^z+i2K z), we have 
o — B 

[(r^+i2Kg)2-(gQ-ik)2]u^f = -2k[biU^^ 

00 

+ Z {b U-, +bi u ^}] (2.12a) 
q=2 q 1-q q 

f [(ro-i2Kg)2-(g^-ik)2]u^f = -2k[b^UQ 

+ I {b„u^^ fb^, u_f}] (2.12b) 

For the terms with exp(-r z+i2KgZ) we have 

[(-ro-i2Kg)2-(go-ik)2]uib = -ZkEb^u b o 
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[(-rQ+i2Kg)^(g^-ik)2]ui^ = 

CO 

(2.13b) 

In principle, this sequence could be extended indefinite­

ly and the resulting system of equations solved for a disper-

tion of a distributed feedback system is at or near the 

Bragg condition, we note that only first order harmonics 

should have significant amplitude and interaction. Hence, we 

truncate the series in Equations (2.11), (2.12) and (2.13) 

for Iq| ̂  2. Furthermore, for a symmetric structure a proper 

choice of the origin gives b^ = -b^=b*, where the asterisk de­

notes the complex conjugation. These restrictions of 

symmetry and choice of origin greatly simplify the following 

analysis although they are not essential physical restric­

tions, Elachi (71) and Peng (72) give a completely 

general method of developing the dispersion relation. 

Okuda and Kubo (73) gives results for asymmetrical structures. 

Equations (2^11)^ (2;12) and (2=13) may now become 

respectively 

sion equation relating to (g^-ik^). However, since opera-

[To^-Cg^-ik)^]Uf = 2kb^[s+-s~fUg 

= 2kbi[s+-s"]Ub 

(2.14a) 

(2.14b) 
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(2.15a) 

= s"Ug (2.15b) 

= -s^u^ (2.16a) 

= -s~Uj3 (2.16b) 

where 

= Ug (2.17a) 

and 

(2.17b) 

s+ = -2kb^[(r^+i2Kg)2 - (go-ik)2]-l (2.18a) 

s" = 2kbj^[(rQ-i2Kg)2 _ (g^-ik)2]-l (2.18b) 

Recalling once more that the device operates near the 

Bragg condition, we now define 

6 = Kg-k (2.19a) 

0 = K_-K (2,19b) 
e ±s o 

Recalling TQ = G^-iK^ and using Equations (2.19), Equation 

(2.18a) becomes 

s+ = -2(Kg-ô)b3_{[GQ-i(K3-6e)+i2Kg]2 

- [go-i(Kg-6)]2}-l. (2.20) 

It is easily shown that under the assumption: 

I(G^+g^) + i(5g+6)I « 2Kg (2.21) 
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Equation (2.20) is reduced to the following; 

s+ = K[GQ+gQ+i(5g+5)]-l, (2.22) 

where K == ib^» (2.23) 

It should be noted that b^ is complex. For example, 

in the case k^(z) is given by Figure (3) b^ is purely 

imaginary so that K is real quantity. 

Similarly Equation (2,18b) for s" becomes 

s- = 2(Kg-6)b^{[GQ-i(K3-6g)-i2Kg]2 _ [g^-i(Kg-6)]2}-l. 

(2.24) 

Again,with the assumption (2,21) as made in Equation (2.22) , 

s~ = iK/(8Kg), (2.25) 

which is certainly negligible compared to s"*". 

Similar approximations may be used to justify neglect 

of the higher order modes of E(z). In fact we may show that 

(3) 

|u+ql 1 |K f2q(l-q)Kg] -^ |uo for |q |  > 2 .  ( 2 . 2 6 )  

Using the results from Equation (2.22) and neglecting s 

Equation (2.14) now becomes 

ro^-(go-ik)2 = 2kb^K[GQ+g^+i(6g+6)]-l . (2.27) 
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As before, using Equations (2.19), Equation (2.27) becomes 

[Go-i(Kg-ôg)]2-[g^-i(Kg-6)]2 = 2kb3^K[G^+g^+i(6g+ô)3"\ 

( 2 . 2 8 )  
Using the condition (2.21), Equation (2.28) becomes 

[gQ+Gçj+i (6+ôg) ] [gQ-G^+i (ô-5g) ] = -K^ (2.29) 

or 

[So^-Go^+Ge^-*^ + i2(g^ô-ôgGQ)] = -<%. (2.30) 

Since is real, then equating real and imaginary 

parts of (2.29) gives 

= K2+g^2.j2 (2.31) 

Ve = V-  (2-32)  

Summarizing our results we have a solution for the electric 

field given by 

E(z) = Ug*(z) expCr^z) +Uj^4j(z) exp^-r^z), (2.33) 

where 

To = (2.34) 

^(z) =1+8 exp(i2KgZ) (2.35a) 

iĵ (z) = 1 - s exp(-i2KgZ) (2.35b) 

s = K[GQ+gQ+i(6g+6)]"^ (2.36) 

K = ib^ (2.23) 
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and 

= K2+g^2_g2 (2.31) 

Go^e = ' (2.32) 

The quantities 6 = (K -k) and 6 = (K_-K_) represent 
B e c o 

respectively the amount of detuning of k and away from 

the Bragg wave number Kg. Here k is the phase constant 

of wave in a uniform nonperiodic medium, while represents 

the phase constant in perfectly periodic medium. The 

quantity k is the distributed feedback coefficient (coupling 

coefficient) defined as the average reflection per unit 

length. and g^ are the effective gain constant of wave 

in a perfectly periodic medium and the gain constant of 

wave in the corresponding uniform nonperiodic medium 

respectively. ôg, g^ and 6 are related by Equation 

(2.31) and Equation (2.32). It is of interest to note that 

when bji^ = 0, i.e., the periodic variation of kQ(z) is 

absent, k(z) = k and k = 0. Equation (2.31) and Equation 

(2.32) suggest that and = 6 which is to be 

expected. 
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B. Propagation in a Perturbed Medium 

Once we have the solution for E(z) for a perfectly 

periodic medium, we may use this as a basis for a perturba­

tion approximation which will account for small deviations 

from an ideal structure. These deviations are modelled by 

the addition of a zero mean random variable to the un­

perturbed propagation constant , 

Consider now the equation 

d^E 2 
—J ^ y E = 0, (2.37) 
dz 

where 

Y = Yq+Yj. (2.38a) 

with 

Yr = 0- (2.38b) 

Recall from the previous section that 

E^(z) = A(J>(z) exp(rQZ) + B#(z) expf-r^z) (2.39) 

is the general solution of 

- Yo E q = 0 (2.40) 
dz' 

with r^, (j), and ip given by Equations (2.34),(2.35a) and 

(2.35b) respectively. 

Assuming that the fundamental periodic nature remains 

essentially unaffected, we seek a solution of Equation 
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(2.37) of the form 

E(z) = A(j)(z) exp[r*(z)] + Bijj(z) exp[-r~(z)] . (2.41) , 

For convenience, define 

$(z) = ln[*(z)] (2.42a); 

Y(z) = ln[^(z)] . (2.42b); 

Then Equations (2.39) and (2.41) become, respectively : 

EQ(z) = A exp[$(z)+rQZ] + B exp[Y(z)-roZ] (2.43a) : 

and 

E(z) = A exp[0(z)+r+(z)] + B exp[Y(z)-r"(z)]. (2.43b); 

Calculating the derivatives of Equations (2.43) gives 

âî| = + (||)^ + 2r â| +r 2] exp(*+r zi 
dz2 dz2 o az w 

+ B[^+ (%^ - 2r (% +ro2]exp(Y-roZ) (2,44a) 
dz'^ dz o dz 

+ (^)^] exp($+r+) + B[^(w-r") + (^)" 
dz 

- 2(g:)(̂ ) + (§̂ )2] exp(Y-r-). (2.44b) 
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Substituting Equations (2.43b) and (2.44b) into Equation 

(2.37) we obtain; 

2 
A[l_ ($+r+) + (Éi)2 + ?(dr+) (d$) 
^g2 dz dz dz 

xin't" 0 2 + 
+ (^) -Y ] exp($+r ) 

+ B[̂ (4'-r-) + (|̂ )2 -2(§)(§̂ ) 

dr" 0 0 
+ (g^) -Y ] exp(V-r") = 0. (2.45) 

Considering the exponentials as orthogonal functions 

the coefficients of the two terms in Equation (2.45) must be 

independently equal to zero. 

É (0+r+) + (Éi)2 + 2(Éll)(Él) + (Éli)2-Ŷ  = 0.(2,46a) 
dz dz dz dz 

âL(^-r') + (ÉI)2 - 2(ÉII) (ÉI) + (ÉI1)2-Y^ = 0 (2.46b) 
^^2 dz dz dz dz 

Similarly, Equations (2.43a), (2,44a), and (2.40) yield 

ÉÎi + (Él)^ + 2r_ É1 +r = 0 (2.47a) 
2 dz o dz o o 

dz 

+ (ÉI)^ - 2r_ ÉI + = 0. (2.47b) 
- 2 dz " dz o o 
dz 



www.manaraa.com

42 

Subtracting (2.47) from (2.46) we obtain 

= o 12.48) 

^ - 2 a|(afro> + <35-»^ - fo'-AY = 0' 12.48b) 
az 

where ~ (Y^-Yq^^ (2.49) 

Since for reasonable perturbations, we expect r'^(z) to be 
dr"'' 

fairly close to T z and ̂  to be fairly close to r^, we might 
^2 + 

also expect —i— to be nearly zero. Therefore, to effect an 
dz^ 2 + 

approximate solution for T (z), we neglect —-— in Equation 
dzZ 

(2.48). Then 

2#' + 'IF̂ o' - AY = 0- *2.50) 

When solved for as Av aptjroaches zero, the roots of 
dz 

Equation (2.50) approach and (-7^-2^). Certainly the 

choice for the solution should be such that it approaches 

to r_ as Ay-»-0. 

ar+ 
Equation (2.50), being a quadratic in can be 

solved analytically as 

Éll . , Si + [(d*+ rn)2+ , (2.511 
dz dz - dz ° 

which can be approximated by 
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dr" 
dz -§ ± V + ^(§4. r„)-ll , (2.52) 

provided that 

Ay I « I + ̂ o) 1^' (2.53a) 

The upper sign in Equation (2.52) gives a solution 

consistent with the previous discussion; 

similarly, 

(2.53b) 

(2.54) 

The assumption inherent in deriving Equations (2.53) 

and (2.54) is 

d^r" 
dz2 

« 1, (2.55) 

To verify the legitimacy of Equation (2.55) consider the 

following key terms. First: 

+ (2.56) 
dz 

_ rÉÊ u. r 1 -1 - rÉi 4. r 1 "2 
" dz'2''dz • 'o' 

Recall 

d$ d 
dz dz 1" * " ? Ë ' 

(2.57) 

(2.58) 

Extracting from Equation (2.35), wc have 
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~ = i2KgS exp(i2KgZ)[1 + s exp(i2KgZ)] ^ , (2.59) 

and 

,2 -4KgS exp(i2K z) 4K Ŝ^ exp(i2K Z) 
G V __ -p o X ^ o . (0 
dz^ 1+s exp(i2Kg2) [i+s exp(i2KgZ)]^ 

If I s I << l,then 

^ = i2K s exp(i2K z) , (2.61) 
UZ B D 

and 

2 
=-4K^s exp(i2K z) . (2.62) 

dz^ ® B 

Using results from Equations (2.61), (2.19) 

[|| + r̂ ] = i2KgZ exp{i2KgZ) + - i(Kg-'Ŝ ) , (2.63) 

which can be approximated by 

rd$ +  r^ ]  =  - iK* .  (2 .64 )  [ 

Turning now to 

,+ 
(f̂ )' - r/ . r̂ Avlff + (2.65) 

which can be reduced to the following; with the aid of 

Equation ;(2.53) and (2.64) 

(|f)2.R^2 ̂  (2.66) 
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Finally by combining Equation (2.57) and (2.66), Equation 

(2.55) becomes 

âîi! 
dz^ _ 1 aE(AY) 

2KB Ay 
+ 2s << 1. (2.67) 

Certainly the 2s term is negligible. 

To pinpoint the first term of the right side of 

Equation (2.67)rexamine first: 

1 

l>
 

1 
2KB Ay 2KB 

( 2 . 6 8 )  

Since 

ZYoYr >> Yr ' 

1 dAy _ 1 rl 
2Kg Ay u2 zst'To as 

i_ 
Y, az 

1_ 
Y, 

dy 
r-, 

az 
(2.69) 

For y as earlier specified, the first and third terms will 

1 1  ̂" r  
be negligible. The term 2ïf dz~^ will be significantly 

less than unity if the spatial spectral bandwidth of y^ is 

well below 2K . Alternatively, y must vary slowly when 
B r 

compared to a wavelength. 

Equations (2.53) and (2.54) may then be integrated to 

give r (z) and r (z) as required. 
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C. Threshold Condition for Perturbed 
Media 

Using the results from the two previous sections we now 

derive an expression relating the threshold gain and reso­

nance frequency for a distributed feedback laser with a 

structure not perfectly periodic. 

Consider the pure distributed feedback case with no 

end reflections other than those induced by the periodic 

nature of the medium. Suppose we have a periodic structure 

extending from z = -L/2 to z = +L/2 with the origin chosen 

so as to satisfy the symmetry requirements of Section A, as 

shown in Figure 5. The propagation within the periodic 

region is given by 

E ^ = Uf exp[0(z)+r*(z)] (2.70a) 
•"P f 

E b = u^ exp[Y(z)-r"(z)], (2.70b) 

where 

If = + i'"' 

' 'o * • (2.71b) 

The propagation outside the periodic region is given by 

E^'^(z) = exp(+ igz). (2.72) 
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For the structure as shown in Figure 5, interior reflection 

coefficients can be defined at z = + L/2. 

Assuming the medium has homogeneous linear magnetic 

properties and using the continuity of tangential electric 

and magnetic fields, at z = + L/2, the reflection coefficients 

at the interior boundaries are given (3) by 

Rl = (Yg-YQ)/(Yp+Y^) (2.73a) 

Rg = (Yp-Y^)/(Yg+YQ), (2.73b) 

where 

' Ê T. + H + e, (2.74a) 

= aP - E ' - E + S 
Y = -iB (2.74c) 
o 

° ¥"'o • H' (2.74e) 

The condition for lasing is that the net propagation 

along a path from z = -L/2 to z = +L/2 to z = -L/2 is loss­

less and in phase, i.e., 

exp(Ç+n) = 1, (2.75) 
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PERTURBED PERIODIC REGION UNIFORM 
REGION 

UNIFORM 
REGION 

exp($ + r 

A exp(-iBz) 

D exp(i6z) 

z = L/2 z = 0 z = -L/2 

Figure 5. Diagram showing reflection and transmission at the boundaries 
between uniform and perturbed periodic regions 
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where 

C = $(L/2) - $(-L/2) + Y(-L/2) - Y(L/2) (2.76a) 

n = r^(L/2) -r'^(-L/2) + r"(L/2) - r~(-L/2) (2.76b) 

or 

 ̂ dr"̂  
dz 

dz + dr 
dz dz • (2.76c) 

dr Recalling Equations (2.53) and (2.54) for Equation 

(2.76c) becomes 

n = n^+ti^. (2.77) 

where 

% = (2.78) 

(e^+e^)dz (2.79) 

Recall the approximate solutions for ()), from Equation 

(2.35) 

4) = 1+s exp(i2K_z) 
O 

Tj; = 1-s exp(-i2K_z) . 
D 

Examining first the term exp(C), defined as 

(2.35) 

exp(Ç) = 
<}>(|)i|;(-|) 

c|)(-|)̂ (|) 
(2.80-2.81) 
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with the aid of Equation (2.35) we have 

[1+s exp(iLK )][1-s exp(iLK )] 
exp(S) = S B 

[1+s exp(-iLKg)][1-s exp(-iLKg)] 
(2.82) 

or 

1-s^ exp(i2KL) 
exp(C) = 5 • (2.83) 

1-8 exp(-i2KgL) 

Assuming that s<<l, Equation (2.83) gives 

exp(Ç) - 1. (2.84) 

The reflection coefficient is given by 

r -i2K s exp(-i2K_z) [1-s exp(-i2K z)] ^+e,+i3 
^ — _o 2 D B 2 I 
^ rQ+i2KgS exp(i2KgZ)[1+s exp(i2KgZ)] ^+e^-iB 

(2.85) 

With the aid of Equation (2.19), and neglecting terms of 

order G, 6, s relative to K and orders s relative to unity, 
B 

may be approximated by 

R 2 = s exp(-i2KgZ)I ^ = s exp(iKgL). (2.86) 
2-2 

Note that and e^, the terms determined by the 

perturbation, have virtually no effect on 

Similarly; 

R_ = -s exp(i2K z)1 T = -s exp(iK_L) (2.87) 

The threshold Equation (2.75) then becomes 
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-s^ exp[i2KgL + 2r^L + = 1 ( 2 . 8 8 )  

or 

-s^ exp (Tij.)exp[2 (G^+i6^)L] = 1. (2.89) 

The absolute magnitude of Equation (2.89) determines the 

threshold gain needed for laser action, whereas the phase of 

Equation (2.89) determines the longitudinal mode of laser 

oscillation. 

By using the expression of the coupling constant, s, 

given by Equation (2.36), Equation (2.88) becomes 

By taking the square root of Equation (2.90) we obtain 

K exp(n^/2)exp[ (G^+iô^)L] 

-k^IG +g +i(6 +6)]"^exp[n +2L(G +i6 )] = 1. 
w U C X. c 

(2.90) 

= +i[G +g +i(ô +6)] . 
— o o e 

(2.91) 

Using the fact that 

exp(9) = [sinh 6 + cosh 0] (2.92) 

Equation (2.91) can be rearranged to give 

^r K exp (TJ—) sinh [G^+i6^) L] = +i(G^+iô^) (2.93a) 

and 

K exp(^)cosh[ (G^+iô^)L] = +i(g^+i6). (2.93b) 
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For convenience of discussion, if we define the following 

dimensionless parameters of interest: 

X = (G^L), y = = (g^L) 

y = (6L) , P = -PT" and x = (kL) (2.94) 
O 6 

then Equation (2.91) and (2.93) can be expressed respectively: 

T exp(p) exp[x+iy] = +i[(x+x^)+i(y+y^)] (2.95) 

T exp(p) sinh(x+iy) = +i(x+iy) (2.96a) 

T exp(p) cosh(x+iy) = ^^(x^+iy^). (2.96b) 

It should be noted that the perturbation parameter p = 

where is as defined by Equation (2.79), represents the 

effect of the irregularity in the periodic medium, either 

due to the inhomogeneity in thin-film material, or due to 

the irregularity in the periodicity in the periodic structure= 

is a complex quantity in general. As p->-0 and 

Equation (2.96a) and Equation (2,96b) become 

T sinh(x+iy) = +i(x+iy) (2.97a) 

T cosh(x+iy) = +i(x^+iy^) (2.97b) 

which is the threshold condition for the perfectly periodic 

case. This is the form, first given by Kogelnik and Shank 

(2), and considered by Wang (3) for the analysis of a DFB 
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laser with a perfectly periodic structure. 

By separating the real and the imaginary part of 

Equation (297a) we obtain 

T cosh X sin y = x {2.98a) 

T sinh X cos y = -y (2.98b) 

and similarly from Equation (2.97b), we have 

T sinh X sin y = x 
o 

T cosh X cos y = -y^. 

(2.99a) 

(2.99b) 

By combining Equation (2.98a) and Equation (2.99a), 

T e^sin y = (x+x^) 

and from Equation (2.98b) and Equation (2.99b) 

(2.100a) 

T e cos y = -(y+y^) . (2.100b) 

On the other hand, from Equation (2.31) and Equation 

(2.32) with the aid of Equation (2.94) we have 

and 

2  2  2 ,  2  2  
X -y = T +XQ - y^ 

xy = x^yQ. 

(2.101a) 

(2.101b) 

Thus we have a system of four equations which relate five 

parameters; x, y, x^, y^ and T. These equations can be 

rearranged into the following forms; 
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X o 
-y tan y (2.102a) 

X tanh X = X (2.102b) 

(2.102c) 

T = e ^/(X+X^) + (Y+Y^) (2.102d) 

The variation of the gain parameters x = (G^L), x^ = 

(ggL) and the phase parameters y = (G^L) and y^ = (6L) with 

the coupling parameter T= (KL) can be studied with the aid 

of Equations (2.102a-2.102d). The plots of x, y, x^ and y^ 

versus T are shown in Figure 6. It should be pointed out 

that the plot of X̂  vs. T has previously been plotted by 

Kogelnik and Shank (2), and also by Wang (3). We shall use 

these plots in the Section III for the investigation of the 

effect of the presence of perturbation parameter p. In 

that as T-»-0 (i.e., c^+O), and y^y^, i.e., Gg^g^ and 

the values of x and x^ can be significantly different while 

the values of y and y^ can be quite different from each 

To facilitate our discussion, we can divide DFB laser 

operation into three categories, according to the behavior 

of the gain parameter x^; "weakly coupled case" (case A), 

the meantime, it is interesting to observe, from Figure 6, 

S -»-S or K On the other hand, in the range of large T E O r z) ZI 

other 
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7.00 

6 .00  

5.00 

4.00 

3.00 

1 . 0 0  

n nn 

sToô 10.00 0.00 2.00 4.00 6.00  

T + KL 

Figure 6<- The variation of the gain parameters x, Xq and phase parameters 
y.Yo with the coupling parameter T for a perfectly periodic 
structure, x = (G L), x = (g L), y = (5 L), y =(ÔL), 
T  =  ( K L )  G O O  e  o  
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7 2 2 2 where T" << (or < << ), "moderately coupled case" 

(case B) where T and x^ are same order of magnitude, and 

2 2 "strongly coupled case" (case C) where K >> g^ • 

For case A, x=x^, and y-y^ so that the effective propa­

gation constant = (G^-iK^) is approximately the same as 

= (go~i^)for the corresponding uniform waveguide. 

However, for case C, can be quite different from . 

The asymptotic behavior of the parameters, x, y, Xq and y^ 

can be investigated using Equations (2.102a-2.102d) . As T-»0 

(i.e., K->0), in other words, as the coupling strength ap­

proaches zero, x->a>, from Equation (2.102d) . We observe from 

Equation 102b that as x-»-"», tanh x->-l so that x+x^ and conse­

quently y-)-y^ which is apparent from Equation (2.102c). In 

order to satisfy Equation (2.102a), the value of y must be 

in the range, (2n-l)^ <y< (2n+l)j, where n is a positive 

integer. As and y^y^, which must approach 

(2n-l)^. For example, for n=l, (6L)-^f On the other hand, 

as x^ = (g^L)->-0, from Equation (2.102a) we observe 

2 (8gL) = y->-ïï,while from Equation (2.102b) x so that 

^o ~ from Equation (2.102c) . As x^+O, y^n, y^^* and 

from Equation (2.102d) T->y^-+-«, which is also apparent from 

Figure 6. Thus, for a weakly coupled case in which for 

sufficiently small T and large x^, we have the following 

asymptotic expression, obtained from Equation (2.102d) and 

Equation (2102a) respectively, 



www.manaraa.com

57 

- X  

T = 2x^6 ° (2.103) 

and 

= 7t/2 (case A) 

On the other hand, for a strongly coupled case in which x 

is sufficiently large and x^ is small, we have the 

following: 

T ~ IT + y^ (2.104) 

and 

y = IT (Case C) . 
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III. EFFECT OF PERTURBATION OF PERIODIC MEDIUM 

ON THE THRESHOLD CONDITION 

In this section we shall study the effect of the presence 

of a perturbation in the periodic medium (or structure) in a 

DFB laser. To estimate this effect, from the perturbed 

threshold condition (2.93), we obtain the approximated ex­

pressions for the change in the gain parameter and in the 

phase parameter as a linear function of the perturbation 

parameter with the aid of truncated complex Maclaurin series 

expansion. To see how significant is the effect under 

consideration we shall obtain the plots showing the varia­

tion of the gain parameters and the phase parameters with the 

coupling parameter for different values of a properly specified 

perturbation parameter. The specification of the perturbation 

parameter depends on a particular statistical model used, 

and for the present study, we shall use the statistics of a 

first order stationary Gauss-Markov process. 

A. Approximate Expression for the Perturbed 
Gain Parameters and Phase Parameters 

The perturbed threshold condition, given by Equation 

(2.93a) and Equation (2.93b) can be expressed in the following 

form, with the aid of Equation (2.94): 

-ix exp(p) sinh(W) = W (3.1a) 
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and 

-IT exp{p) cosh(^) = W, (3.1b) 

where 

W = (x+iy) w = (x^+iy^) 

and 

P = (Pi+iPg)• (3.1c) 

Here the symbol bar is placed on the quantity to emphasize 

the fact that the perturbed case is being considered, while 

the symbol tilde is placed on the letter to emphasize that a 

complex quantity is being considered. 

It should be noted that as T->0, x^x, y^y, x ->-x and 
o o 

y^->y^ in which the parameters x, y, x^ and y^ are as defined 

in Equation (2.94). 

The functions W(p) and w(p), being analytic,can be 

expressed in terms of a complex Taylor Series, or Mactlaurin 

series expansion in the perturbation parameter p and the 

point p=0, since our point of reference is the unperturbed 

configuration. If the perturbation is small so that only 

the lower-order term in the series expansion contribute 

significantly, then we have the following approximate ex­

pressions for the effective propagation parameter ^(p) in the 

periodic medium and the propagation parameter w(p) in the 

corresponding nonperiodic medium; 



www.manaraa.com

60 

»(P) = {3.2a) 

w(p) = + ajl p. (3.2b) 

where 

= (x+iy) and = (x^+iy^), (3.2c) 

in which x, y, x^, and y^ are as defined in Equation (2.94) 

and satisfy the relations given by Equations (2.102a-2.102d). 

The coefficient of the second term of the right-hand 

side of Equation (3.2a) and Equation (3.2b) can be easily 

evaluated to give 

It should be pointed out that two types of perturbation 

may be present; type (A), in which the perturbation is mainly 

due to the irregularity in a physical parameter of the material 

from which the periodic structure is constructed, and type 

(B), in which the perturbation is mainly due to a 

geometrical factor, for example, the irregularity in the 

spatial periodicity of the structure. 

Upon substitution of Equation (3.2c) into Equation 

(3,3b) we have 

. Jo (3.3a) 
p.O p=0 

and 

(3.3b) 
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^1 - A,+iA_ I (3.4a) 
aP p=o ^ ^ 

where 

y_(i+T^) 
A. = — 5 5"/ (3.5b) 

and similarly, substitution of Equation (3.2c) into Equation 

(3.3a) gives 

|| =Bi + iB2, (3.6) 
p=0 

where 

x-(x x+y y) 
B, = ° ° ) (3.7a) 

, y-x^y+XYo 
— 

Since the perturbation parameter p is complex, in general, 

by letting p = (p^+ipg) in Equation (3.2b) then separating 

the real and the imaginary parts of Equation (3.2b), 

we obtain 

and 

*0 ' + <hPrV2' (3-GI 

'Vl + Va' • (3-9) 
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Similarly/by substituting Equation (3.6) into Equation (3.2a), 

we obtain 

X = X + (3.10) 

y = y + (BgP^+B^Pg). (3.11) 

Recall that the dimensionless parameters x, y, x^ and y^ 

are for the case of a perfectly periodic medium whose varia­

tion with the coupling parameter was previously shown in 

Figure 6. In order to study how x and y vary with the 

coupling parameter x, we must specify the value of the 

perturbation parameter p. 

Using the approximation made in Equation (2.64), the 

factors Eg and as defined in Equation (2.74d) and 

Equation (2.74e) can be expressed as = (̂ )̂, so 

that from Equation (2.79) and Equation (2.94) we can write 

the perturbation parameter p as follows: 

L 
i 

p = 2K3 ^ (AY)dz, (3.12) 
L 
"2 

where Ay = (3.13a) 

in which = (g^-iîc), with k = (K_-6) and y = (y_+Y_); 
0 0  O o  JT 

with y^ = (q^-ik^). The subscript r is used to emphasize the 

fact that the quantity under consideration is that due to 

the contribution from the random perturbation process. 
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Under the usual assumption that 6, g << K , k = K , 
O C B 

(AY) caiï be expressed as 

AY = [9r^-k^^-2Kgk^] - 2i(K^g^^+g^k^). {3.13b) 

For an illustration, we shall consider the case where 

9r « k^. This is equivalent to assuming that the random 

perturbation process contributes mainly to the phase constant 

of the propagation constant y. For this case Equation 

(3.13) is further simplified as 

Ay = -(2Kgk^+k^2). (3.14) 

Upon substituting Equation (3.14) into Equation (3.12) we 

obtain 

p^ = 0. (3.15a) 

and 

P2 = -Pf, (3.15b) 

where 

L 

^ (2K„k +k^^)dz . (3.16) 
L B r r 

~ 2  

Consequently, Equation (3.8) through Equation (3.11) become 

° "o h''r 

ïo = (3-18) 

X = X + (3.19) 

2Kg 
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y = y-B^p^ . (3.20) 

Here the factors and B^ are the function of x, y, 

and y^. The perturbation parameter depends on the 

random variable k^. There is a question of whether we should 

take the mean value of or the rms value of p^. For the 

illustration, we shall take the mean value and denote it 

with p =p . In order to calculate the mean value of the 
o r 

random variable p^, which depends on the random variable k^, 

we must specify the model of statistical process. 

As is well-known that from the theory of statistics, 

a random variable ç whose autocorrelation function is a 

decreasing exponential: 

Rç(Ç) = (3.21) 

is frequently a useful representation of random system 

disturbances. This autocorrelation function is representa­

tive of a first-order Gauss-Markov process (74). The 

statistics of this process are completely described by the 

autocorrelation function, given by Equation (3.21) in which 

the mean value is taken as zero. The expectation (or mean 

value) of the random variable ç is defined as 

Ç = E{;} = ;G(;)d;, (3.22) 

where the normal probability density function G(ç) has the 
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form of a Guassian distribution. 

The variance of ç is defined as 

2 
0 = 

°° - 2 

G(ç)dç (3.23) 

or 

0^ = E{Ç^} - [E{Ç}]^ (3.24) 

Suppose that under consideration is a random 

variable in the stationary Gauss-Markov process. If we 

define a dimensionless random variable ç as 

; = (kp/Kg) (3.25) 

then Equation (3.16) becomes 

L 

(2ç+ç^)dz (3.26) 
L 

~ 2  

— 2 and the mean value ç, and the mean square value ç can be 

calculated according to Equation (3.22). Since ̂ =0 is 

~2 2 assumed, and from Equation (3.24) ç = ^ , where cr is the 

standard deviation of the random variable ç, the mean value 

of can be easily calculated from Equation (3.26) to give 

Po = Pr = (3.27) 

Taking the statistical average of Equation (3.17) through 

Equation (3.20) we obtain a set of equations involving x^, 

y^, X, y and . Upon specifying the value of p^, the plots 

of X̂ , y^/ X, and y vs. X, were calculated and the results 
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are shown in Figure 7 through Figure 10. 

2 For the weakly coupled case where T << 1 and 

2 2 2 2 
T « (or K << g ), from Figure 6, we observe that 

2 2 y^ << , 1 « x^. Equations 3.5 and 3.7 are reduced 

to give A. =1, A, = —, B =-l and , so that 
X z XQ i ^ 

° ''o  ̂"o (3-28al 
o 

y^ = Yq + Pq (3.28b) 

_ y 
x = X + — p (3,29a) 

^o ° 

y = y + Pq • (3. 29b) 

Here we observe that as x^x^-»-x^->x->-x, and 

y^^y» which is consistent with the behavior shown in Figures 

7 through 10. 

On the other hand, for the strongly coupled case where 

2 2 2 2 2 
T >>1, and T >>x (or k >>g ), once again from Figure 6 we 

° o 
2 2 T observe that y >T, x <<y , x <<1, so that A, = —^ -1, 

2 ° ° ° .. _ ^ ^ 
= —f B, = = - — and B_ = . In this case, 

we have 

,̂ 2 
y = y + (1- —̂ ) p (3.30b) 
•^o o 6 o 

o 

X = X + — p (.3.31a) 
^o ° 
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Figure 7. The variation of the gain parameter Xq with the coupling param­
eter T for different values of the perturbation parameter p^. 
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Figure 8. The variation of the phase parameter y with the coupling 
parameter T for different values of the perturbation parameter 
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Figuré 9. The variation of the perturbed effective gain parameter x 
with the coupling parameter T for different values of the 
perturbation parameter 
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Figure 10. The variation of the perturbed effective phase parameter y 
with the coupling parameter x for different values of the 
perturbation parameter 
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y = y + ~ p . (3.31b) 

We note that as y^n, x^-»-(x^+xp^), 

YQ' ŶQ' x->x^,and y^y, which is also shown in Figures 7 

through 10. 
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IV. DISCUSSION OF RESULTS 

The variation of the perturbed gain parameter ~ 

with the coupling parameter T = (KL) is illustrated in Figure 

7 for different values of the perturbation parameter p^. 

It is observed that in the absence of the perturbation 

(p^=0), x^=x^=(G L̂) decreases with T monotonically, which 

suggests that the threshold gain, (i.e., the gain required 

for lasing) decreases as the coupling becomes stronger, which 

is to be expected. For a given value of T, X^ increases with 

monotonically, which suggests that the required threshold 

gain increases as the degree of perturbation increases, which 

is also to be expected. The rate of increase of x with p o o 

is small in the range of small T, but it is large in the range 

of large T. Furthermore, it is interesting to note that, 

for example, for the plot with p^ = 0.4, x^ has its minimum 

value of 1.5 at x - 2.5, while for the case p^^O, x^ decreases 

monotonically. For the case p^ = 0.6, x^ has its minimum 

value of 1.75 at T=2.0. Thus as P̂  increases the position of 

the valley in the plot shifts to a lower T and a higher x̂ . 

The above observation tends to suggest that for a given value 

of p^, the required threshold gain would be minimum at a 

value of T which is not necessarily large, in contrast 

to the case in which the perturbation is absent. We also 

observe that x^>x^, i.e., the perturbation gain parameter is 
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greater than its unperturbed counterpart. As r+O, 

regardless of the value of which suggests that the 

effect of the perturbation is insignificant when the coupling 

is so small that the required threshold gain has to be very 

large. On the other hand, in the range of large T, the 

small perturbation can have greater effect on the required 

threshold gain. 

The variation of the perturbed phase parameter y^ = (ôL) 

-with coupling parameter T is illustrated in Figure 8. 

It is observed that in the absence of perturbation, (p^=0), 

y^=y =̂{Ô̂ L) increases with T monotonically, which suggests 

that the amount of detuning of the phase constant away from 

the Bragg wave number Kg, increases with the strength of 

coupling. For a given value of T, y^ increases monotonically 

with which suggests that the amount of detuning tends to 

increase with the degree of perturbation. The effect of the 

presence of the perturbation is larger in the region of 

small T than that in the region of large T. We observe that 

y^>y^, that is to say the perturbed phase parameter is greater 

than its unperturbed counterpart. As y^^y^, thus sug­

gests that the effect of perturbation becomes insignificant 

as the degree of coupling is increased. However, the effect 

of perturbation can be significant if the coupling is very 

weak (see the behavior of y^ as T->-0 in Figure 8) . 

The variation of perturbed effective gain parameter 
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X = (GL) with the coupling parameter t is illustrated in 

Figure 9. It is observed that in the absence of perturbation 

X = X = (GgL) decreases with t monotonically, and x>x^, as 

seen in Figure 6. The behaviors of x and x^ in the 

absence of perturbation are quite similar. The required 

threshold effective gain decreases with the degree of 

coupling, as is expected. In the presence of per­

turbation, since"x > x, the perturbed effective gain 

parameter is always greater than its unperturbed counter­

part. We also observe that as T-+0, x^x and as T->°° simi­

larly x->x, whereas for the value of T in the range 

2<T<10, X increases significantly with P̂ . This suggests 

that unless either the extremely weakly coupled case or 

the extremely strongly coupled case are being considered, the 

effect of the perturbation in general, may not be negligible. 

In order to elaborate this aspect, a plot of the relative 

AX change in the gain parameter, (^), versus the coupling 

parameter T, for different values of n is shown in 
o 

Figure 11, with the aid of Equation (3.19). 

It is of interest to observe that the plots have peaks 

in the vicinity of T=3.Ô. For example, at T=3.0 an increase 

in the effective gain parameter is about 12.5% for p^=0.4 

and 25% for p^=0.8. Thus the effect of the perturbation 

can be significant. 

The variation of the perturbed effective phase parameter 
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y = (Ô L̂) with the coupling parameter T is illustrated in 

Figure 10. It is observed that when pg=0, y = y = (S^L) 

increases monotonically with T. In the range of small T, ; 

y increases much more rapidly than in the range of large T, 

and y tends to saturate as x increases, then approach ir. 

In the presence of the perturbation, y>y and y increases with 

pQ. For large values of p^, the plot of y vs. x possesses a peak, 

for example, at x=2.2 for p^=0.8. To see the relative 

change in y due to the presence of perturbation, we plot 

(̂ ) vs. X for different values of p̂  as shown in 

Figure 12. Since (^) decreases monotonically with x, the 

effect of perturbation on the change in y is small in the 

range of large x, whereas it can be significant when x 

is small. This means that when the coupling is weak, the 

shift in the effective phase parameter can be significant. 

However, it is not very significant when the coupling is 

extremely strong. For example, at x = 2.0, (AZ) takes 
Y 

the values of 0.06 and 0,24 at p^ = 0.2 and p^ = 0.8 

respectively. 

It should be pointed out that the values of p^ used in 

the illustrations of Figures 7 through 12 are reasonable= 

1 2 
This can be seen as follows; Recall p^ = (:rK_Icf ), where 

O Z D 

Kg = , with "a" being the spatial periodicity and L 

denotes the length of the periodic structure. Typical 

interaction lengths Lare between 100 ym to 1 cm. Recently 
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the distributed feedback operation of an AlGaAs laser has 

been demonstrated (75) in an electrically-pumped single-

heterojunction GaAs laser at low temperature {77°K). In 

this device corrugations used were etched 1300Â deep and 
O 

had a period of 3500A. A grating of 0.36 ym periodicity 

produced by holographic means on an x-ray mask like that 

used by Bernacht and Smith (76). By taking "a" to be 

0.3 ym, (KgL) takes the values in the range 10^_< (KgL)£lO^ 

-4 -2 when 10 £L£l0 m. Consequently, for p^=0.6, the 

standard deviation o = (2 will take the values in 

-2 ®-3 
the range, 3.5x10 >o>3.5xlO 

It should be also be pointed out that in the present 

analysis only the lower order terms in the Maclaurin series 

expansion are considered by assuming the perturbation is 

sufficiently small. To study the case of larger perturbation, 

it is necessary to consider the higher order terms in the 

series. However, for such a case, the analysis would re­

quire the calculation of higher order statistical moments of 

a random variable which complicates the analysis. 

In the present investigation, for the sake of simplicity, 

we assumed the perturbation parameter p is a purely imaginary 

quantity, i.e., p^^ = 0, and pg = -p^, by assuming that 

kj,>>g^ in Equation (3.13b) . This is equivalent to assuming 
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that the random perturbation process mainly affects the phase 

aspect of the propagation constant y. However, it should be 

of interest to investigate the effect of g^ when it is not 

negligible in comparison with k^. This is left for a 

future investigation. 

In dealing with the perturbation parameter we have a 

choice of whether to use the mean value or the rms value of 

the random variable p^. For the sake of simplicity, the mean 

value was used, and the set of equations governing the mean 

perturbed gain parameters x^, x and the mean perturbed phase 

parameter y^, y are derived as a function of the mean value 

of p^, (i.e., Pj.~Pq) • If the rms value were to be taken then 

the rms value of the parameters x, x^, y, and y^ must be 

considered in Equation (3.17) through Equation (3.20). In 

this case the analysis becomes considerably more complicated 

as indicated in Appendix h, sines it would involve the 

evaluation of the rms value of p^. 
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V. CONCLUDING REMARKS 

In the present study the solution of a linear one-

dimensional wave equation governing the electromagnetic fields 

of an optical wave in a periodic structure of the distributed 

feedback semiconductor laser is considered with the aid of 

the truncated Floquet-Bloch approach. The effect of a per­

turbation in the periodic structure such as an irregularity 

in the spatial periodicity or in the depth of corrugation 

of the periodic structure has been investigated. 

First, the threshold condition for a perfectly periodic 

structure was derived by using the condition of the continuity 

of tangential components of electric and magnetic field 

intensities of the wave at the ends of the periodic interaction 

region. This unperturbed threshold condition is expressed in 

terms of a set of conveniently defined gain parameters; 

x^=(g^L), x=(G^L) and phase parameters; y^=(ôL), y==(6^L) and 

the coupling parameter T= (KL) as shown in Equations (2.102a-

2.102d). Here we recall L denotes the length of the periodic 

structure, denotes the effective gain constant of the 

periodic structure, and 5^ = (Kg-K^) is the amount of detuning of 

the phase constant away from the Bragg wave number Kg. 

denotes the gain constant in the absence of the periodic 

structure and 6=(Kg-k) is the counterpart of 6^ when the 

coupling is absent, i.e. the coupling coefficient K=0. 
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A small perturbation in the periodic structure is then 

introduced into the system. The effect of this perturbation 

on the threshold condition is examined with the aid of a 

truncated Maclaurin series and a first-order stationary 

Gauss-Markov process. The perturbation parameter is 

introduced in the threshold condition. Using the derived 

perturbed threshold condition the changes in the gain 

parameters and in the phase parameters were investigated. 

The mean gain parameters x, x^ and the mean phase parameters 

y, and y^ are introduced into the discussion. The approxi­

mate expressions for x, x^, y, and y^ as a function of T 

and are obtained and calculated to investigate the 

significance of the effect of the perturbation. 

The significant findings from the present study are 

described as follows: 

1. The effective threshold gain constant required for 

lasing in the perturbed periodic structure, G, 

increases with the perturbation parameter p^. 

2. The effective detuning of the phase constant away 

from the Bragg wave number, 6^, increases with p^. 

3. The effect of perturbation on the effective gain 

constant is small when the device is operated in 

the regions of either very weak coupling or very 

strong coupling. However, for the intermediate 

value of T, the effect of the perturbation on G may be 
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quite significant. The plot of (AG/G) vs. T, which 

shows the variation of the relative change in the 

effective gain constant with the coupling parameter, 

has a peak value of 0.125 at (KL) = T = 3.0 when 

= 0.4, and (AG/G) also increases with P^. 

4. The effect of the perturbation on the effective phase 

constant 6^ is small when the device is operated 

in the region of strong coupling but is quite 

large when it is operated at the region of very weak 

coupling. (Aô^/ô^) decreases monotonically with x 

but increases with p^. For example, when p^=0.4, 

(AÔ^/6g) takes the values of 0.09 and 0.05 at (kL) = 

3.9 and (KL) = 7.0 respectively. 

The result of the present study suggests that when the 

device is operated in the region of moderate coupling 

strength, say 0.1<t<10 the effect of the perturbation on the ef­

fective gain and phase constant, G and 6^ of the periodic 

structure can be significant. In optimally designing a 

distributed feedback (DFB) laser it is important to determine the 

coupling coefficient and propagation constant. The coupling 

coefficient K determines the minimum net gain and/or length 

of the structure, L, required to initiate laser operation 

(1, 77). A device operating at an overly large value of (KL) 

may also be suboptimal (77) so that it is undesirable. Since 
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a typical device is operated in the range of moderate values 

of (KL),the effect of the perturbation under consideration 

cannot be neglected when it exists in the system. 

Finally, it should be pointed out that the method of 

analyzing the perturbation effect in the periodic structure 

developed in the present study may also be applied to other 

types of semiconductor devices such as Bragg reflector 

(DBR) laser (78, 79) which employs the same type of periodic 

structure. 

A. Suggestion for Further 
Studies 

It will be desirable to extend the analysis to cover 

the case where the perturbation parameter p = (p^+ipg) is 

complex and the contribution of both g^ and have to be 

taken into account. 

Although the theoretical results reported in the 

present study are interesting, some sort of experimental 

verification indeed is desirable. For example, the assump­

tion about the nature of the aperiodic perturbation, while 

reasonable, are unsubstantiated. One method of investigation 

would be to subject various distributed feedback structures 

to an external coherent sources and examine the scattering 

pattern. Since the scattering pattern represents the Fourier 

transform of the structure, some insight into the nature of 
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the perturbation might be gained. Another alternative would 

be to fabricate distributed feedback structures with inten­

tionally induced imperfections and examine their gain and 

frequency characteristics. Unfortunately, other effects 

such as surface imperfection and deep traps may swamp 

changes induced by aperiodicity. 
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VIII. APPENDIX 

The introduction of perturbation into the system pro­

duced a change in the propagation parameter as shown in 

Equation (3,2a) for W(p) and Equation (3.2b) for w(p): 

# = # + Aw (A.la) 
o 

w = Wq + Aw (A. lb) 

where 

AW = ^]P and = (x+iy) (A.2a) 
dp 5=0 

Aw = and w = (x +iy„) . (A. 2b) dp o o o 

The perturbation parameter p is complex in general and 

is taken as a random variable. By writing p=p]^+ip2 (A.3) 

aplp^o " (A'4) 

and 

we have from Equation (A.4) 

Ax = (B^P2-B2P2) (A.6a) 
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and 

Ay = (BgPi+B^pg). 

From Equation (A.5) 

1̂ 1 "2̂ 2 

(A. 6b) 

(A.7a) 

and 

AYo = (AgPi + A^pg). (A.7b) 

Here the coefficients, , Ag, B^ and Bg are the 

values evaluated for the case of absence of perturbation 

and are independent of p^ and pg. On the other hand, p^ and 

P2 are random variables. Consequently the quantities 

Ax, Ay, AXg, and Ay^ are also random variables. 

Since = (gL), and y^ = (6L), for example, the 

changes in the gain constant Ag and in the phase constant A6 

can be investigated. However, a question arises as to 

whether the mean value, (E{Ag}=îg) or the rms value 

(E{g^}=(Ag)should be used: Here E{ } denotes the expec­

tation operator, and the averaging process depends upon the 

model of the probability density function assumed. 

For example, by applying the expectation operator on 

Equation (A.7) and recalling Efp^pg) = 0, we have 

E{AXq} = AXQ = A^Pi - A2P2 (A.8a) 

E{Ay^} = Ay^ = AgP^ + A^Pg (A. 8b) 
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E{(Ax^)^} = (AXQ) ̂ (A.9a) 

E{{AYQ)2} = (AYQ) ̂ = A2^PT^ + (A. 9b) 

The variance may be computed as 

O'x  ̂= E{ (AXq) 2}-[E{AX^}] ̂ 
o 

= (AXq) ̂ - (AXQ)^ 

= Ai^Op^Z+Ag^Op 2+2AiA2E{pi}E{p2}. (A.10a) 

Similarly; 

a ^ = A.Zon 2+A<,2a 2-2AA,E{pT}E{p_} (A.10b) 
y© 1 Pi ^ ^2 ^ 1 ^ 

In the present study p^ is taken as zero, The 

parameter n^, given by Equation (2.79), was expressed in 

terms of the perturbation parameter P2 = -Pj. as in Equation 

(3,16), in which is treated as a random variable so that 

the perturbation parameter or is also a random 

variable. 

We are now faced with the task of statistically 

describing a function of the form 

r L  
n = e(z)dz , (A,11) 

Jo 

where e(z) = Ak(z) + Bk^(z) . (A,12) 

and k(z) is zero mean, first order Gauss-Markov process 
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defined by its auto-correlation function 

Rj^(Ç) = E{k(z)k(z+a }. 

Recall now (80, 81) 

0 

R^(X2-Xi'-Ç)h(A^)h(X2)dXidX2 

(A.13) 

R (?) = 
y 

(A.14) 

y(z) = X(z-X)h(X)dX (A.15) 
0 

Clearly, for the function described in Equation (A,11) 

h(X) = u(X)-u(X-L) (A.16) 

0 X<0 
u(X) = { 

1 X>0 . 

Use of Equation (A,4) requires the autocorrelation 

function for e :  

R_ = A^R, + B^R + 2ABR ^ 
 ̂  ̂ -.0 1 1.2 

(A,17) 

k2 
(A.18) 

kk' 

R = E{k (z)k*'(z+Ç)} = 0 
kk^ 

= E{k(z+?)k^(z)} = 0 

We now require 

R  _(5) = E{k^(z)k^(z+U }. 
k2 

(A.19) 
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Recall for two jointly normal, zero mean random variables 

E { x 2 y 2 }  =  E { x ^ } E { y ^ } + 2 E ^ { x y } ( A . 2 0 )  

Then 

R (Ç) = E{k^(z)}E{k2(z+C)}+2E2{k(z)k(z+Ç)} {A.21) 
k2 

Recall k is stationary; hence 

E{ k 2 { z ) }  = E{ k 2 ( z+C)} = R^(0). (A.22) 

Also note 

E{k(z)k(z+C)} = \iV. (A.23) 

Hence 

R JÇ) = R 2(0) + 2R (A.24) 
k2 k * 

and 

R  ( S )  =  +  R g t C )  +  R g t C )  (A.25) 

where 

R^ = b2R^2(O) 

Rg = A2rj^(Ç) 

R, = 2B2R,_2{£) . 

We may now evaluate R^(S) using Equations (A.14) and (A.15), 

for representative R^(%). 
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Let 
3s 

\ { Ç )  =  - 2 ^  E X P ( - G L C L )  ( A . 2 6 )  

wnere 

g<<K 
B 

Then 

^ n2,GSo 2 R^(Ç) = 

= A2(!fo)exp[-G|S|] (A.27) 

RgfC) = 2B2(ffo)2exp[-2g|C|]. 
2 

Note that Equation (A.14) is linear in R so that R^(g) 

may be computed term by term. Examining these in order of 

complexity, we first consider the contribution of the 

constant term. 

3s, 

0 .10 

r  r  2 ^®o 2 
R,n(S)= I B^(^)^[u(X;,)-u(Xi-L)] [u{X ) 

Jn in ^ ^ 

-u(X2-L)]dX^dX2 (A.28) 

0 
dX^dXg (A.29) 

9 3So 2 
= B ( -•) (A.30) 

The next contribution is from Rj^(Ç). 
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*2n 
" " 2,G:o 

0 
A (—2—) exp (-31 I ) [u (Aj^) 

-u(X^-L)] [u(X2)-u(A2-L)]dX3^dÀ2 (A.31) 

First integrating with respect to X2; note that 

expf-OlXg-^i-C) has discontinuous derivatives at the origin 

and must be split. 

exp[-B(X2-Xn-Ç)] for X„>Xi+^ 
exp[-g|X_-Xii: |] = { ^ (A. 32) 

exp [B (X2-X2^-Ç) ] for X2j^^i+S 

Since the autocorrelation function is even, we assume 

positive 4 and invoke symmetry to complete R(Ç). 

Therefore: 

exp(-3[u(X2)-u{X2-L)]dX2 

j.X +L 
= I 1 exp[« (X.-j-Xi-C) ] [u (X^)-u{Xt-L) IdX^ 

JO ' * ^ -

(A.33) 

Xj_+L 
exp[-3 (X^Xj^T^ ) ] [u(X2)-u(X,-L)dX2 

Each of these integrals must again be split, 

j " exp[e (X2-Xj^-Ç) ] [u(X2)-u (X2-L) ]dX2 

|.Xi+ 
I exp 13 (Xp-X,-O ] dXo r X,+Ç<L 
JO ^ i 

J exp[3 (X~-X,-Ç) ]dX«, X-,+Ç>L 
JO ^ ^ ^ ^ -

(A.34) 
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exp[-3(X9-AT-Ç)1[u(X«)-u(X^-L)]dX„ 

I  e x p  [ - B  ( X ^ - A - i )  ]  f . U  ,  À , + Ç < L  
;xi+5 2 1 

(A.35) 

0 À^+Ç>L 

Completing the solution of these intermediate integrals 

gives: 

,00 

f i{2-exp[-3 (X-i+L) ]-exp [-3 (L-A-i-Ç) ]}, X +Ç<L 
1 p 1 

(A,36) 

&.{exp [ 3 (L-Aĵ -Ç ) ] -exp [-3 ( 

Hence, 

I^[u(Aj^)-u(A^-L)]dX^ 
A^Gs. 
= -r  ̂ 

0 

,00 

+ I„[U{At)-U(A -DldA, (A.37) 
L-C 1 

where 

_ 1 - —{2-exp [-3 (^^+L) ]-exp [-3 (L-A-j^-Ç) ] } (A. 38a) 

Ig = ^{exp[3 (L-Aj^-Ç) ]-exp[-3 (Ajl+Ç) ] } . (A.38b) 
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Evaluating the integrals gives: 

Il[u{Xi)-u(Ai-L)dXi 

= + ^{exp(-3L)-exp(-3Ç)+exp[-3(Ç-L) 1-1} 

(A.39) 

r I I-[u(A,)-u(A -L)]dA, 
JL-S ^ ^ ^ ^ 

= iy{l-exp (-3U+exp[-3 (L+Ç) ]-exp (-3L)} (A.40) 
3 

Hence, 

= A2s^((L-C)+^{exp[-3(L-0]+exp[-3(L+0 

- 2 exp[-3Ç3}) . 

for L>g>0 (A.41a) 

and by symmetry 

2 1 
RgqtS) = A^s^[(L+Ç)+^{exp[-3(L+0]+exp[-3(L-Ç)] 

-2 exp[3Ç]}]/ for -L£Ç£0. (A.41b) 

Similar analysis for gives 
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2 2 
= ^?^[3(L-U+ -^-{exp[-2 3(L-Ç)]+exp[-26(L+0 3 

-2 exp[-23Çl}], L>C>0 

2 
£_[ 3 {L+Ç)+^{exp [-23 (L+Ç)+exp [-26 (L-U ] 

Efs 2 

-2 exp[23Ç]}], -L<C<0. (A.42) 

We are primarily interested in the first and second 

moments of n. Recall; 

E{p2} = R (0) (A.43) 

E 2{p} = R^(m) 

E { ( p - p ) 2 }  =  R ^ { 0 ) - R ^ ( ° ° )  

Hence 
3 s 

E^{^] = B2( °)2L2 = B^E^{k2}L^ (A.44) 

E{(n-n)^} = A^SQ[L+ ^{exp(-3L)-l} (A.45) 

S 

+ —2— [L+ 2^{exp(-2BL)-1}]. 

Note that 

T.im E{(rj_n)2} _ Q (A.46) 
3L^0 

and 

E{(n-n)2} < L[A^S^+B^S„^3/2]. (A.47) 

We therefore simplify Equation A.45 to 
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E{ (n-Tl) = L{A^s^ + (A.48) 

provided that (3L) >> 1. 

We may now compare terms. From Equation (3.16), Equation 

(A.11), and Equation (A.12), we have 

A ~ 2K (A.49) 
B B 

Now observe 

2A^s 
° 2(^) = 4K„^/E{k "} = 4/0^ >> 1. (A.50) 

32^^23 «B '6s^' —B '"'"r 

Thus 

E{ (n-ÏÏ) - A^Ls^. (A. 51) 
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